目标检测入门

绛木子 104 0

引言

目标检测领域发展至今已有二十余载,从早期的传统方法到如今的深度学习方法,精度越来越高的同时速度也越来越快,这得益于深度学习等相关技术的不断发展。本文将对目标检测领域的发展做一个系统性的介绍,旨在为读者构建一个完整的知识体系架构,同时了解目标检测相关的技术栈及其未来的发展趋势。由于编者水平有限,本文若有不当之处还请指出与纠正,欢迎大家评论交流!

1. 背景

目标检测任务是找出图像或视频中人们感兴趣的物体,并同时检测出它们的位置和大小。不同于图像分类任务,目标检测不仅要解决分类问题,还要解决定位问题,是属于Multi-Task的问题。

作为计算机视觉的基本问题之一,目标检测构成了许多其它视觉任务的基础,例如实例分割,图像标注和目标跟踪等等;从检测应用的角度看:行人检测、面部检测、文本检测、交通标注与红绿灯检测,遥感目标检测统称为目标检测的五大应用。

2. 目标检测发展脉络

目标检测的发展脉络可以划分为两个周期:传统目标检测算法时期(1998年-2014年)和基于深度学习的目标检测算法时期(2014年-至今)。而基于深度学习的目标检测算法又发展成了两条技术路线:Anchor based方法(一阶段,二阶段)和Anchor free方法。

2.1 传统目标检测算法

不同于现在的卷积神经网络可以自动提取高效特征进行图像表示,以往的传统目标检测算法主要基于手工提取特征。传统检测算法流程可概括如下:

  1. 选取感兴趣区域,选取可能包含物体的区域
  2. 对可能包含物体的区域进行特征提取
  3. 对提取的特征进行检测分类

2.2 Anchor-Based中的Two-stage目标检测算法

基于手工提取特征的传统目标检测算法进展缓慢,性能低下。直到2012年卷积神经网络(Convolutional Neural Networks, CNNs)的兴起将目标检测领域推向了新的台阶。基于CNNs的目标检测算法主要有两条技术发展路线:anchor-based和anchor-free方法,而anchor-based方法则包括一阶段和二阶段检测算法(二阶段目标检测算法一般比一阶段精度要高,但一阶段检测算法速度会更快)。

二阶段检测算法主要分为以下两个阶段Stage1:从图像中生成region proposalsStage2:从region proposals生成最终的物体边框。

2.3 Anchor-based中的one-stage目标检测算法

一阶段目标检测算法不需要region proposal阶段,直接产生物体的类别概率和位置坐标值,经过一个阶段即可直接得到最终的检测结果,因此有着更快的检测速度。

2.4 Anchor-Free中的目标检测算法

基于Anchor的物体检测问题通常被建模成对一些候选区域进行分类和回归的问题,在一阶段检测器中,这些候选区域就是通过滑窗方式产生Anchor box,而在二阶段检测器中,候选区域是RPN生成的Proposal,但是RPN本身仍然是对滑窗方式产生的Anchor进行分类和回归。基于Anchor的检测算法由于Anchor太多导致计算复杂,及其所带来的大量超参数都会影响模型性能。近年的Anchor free技术则摒弃Anchor,通过确定关键点的方式来完成检测,大大减少了网络超参数的数量。

本站只作功能演示之用。严禁发布低俗、违法、涉及政治的内容。